World's first switchable quantum metamaterial investigated

February 15, 2018 //By Christoph Hammerschmidt
World's first switchable quantum metamaterial investigated
Scientists have come a step closer to the future vision of quantum informatics: They succeeded in realizing the world's first quantum metamaterial whose light transmission can be precisely controlled at temperatures of -273°C (0 K). The material could be used as a control element in circuits for quantum signal processing.

The team of researchers from the Leibniz Institute for Photonic Technologies in Jena (Leibniz-IPHT), the Karlsruhe Institute of Technology (KIT) and the National University of Science and Technology (NUST MISIS) in Moscow produced for the first time a quantum metamaterial that interacts in a special way with electromagnetic radiation in the microwave range. The metamaterial consists of a linear array of 15 meta atoms, the quantum bits or qubits: loops of aluminum with a diameter of a few microns, which, at their operating temperature close to absolute zero, transport electrical current superconducting and thus loss-free. At some points, the aluminum rings are interrupted by a few nanometers of thin tunnel structures, the Josephson contacts. This results in superconducting oscillating circuits in which current flows only in two defined states.

For the first time, the researchers have now constructed a meta-material from so-called twin qubits, which consist of two interconnected loops and thus have five Josephson contacts instead of three. The structures were created in the clean room of the Leibniz-IPHT. "We investigated how the twin qubits behave when they are brought into two different states by means of a magnetic field,” says Leibniz-IPHT scientist Prof. Evgeni Il' ichev, describing the discovery. “The metamaterial showed an unexpected property to us. The magnetic field enables us to precisely control its transmittance for radiation in the microwave spectrum. We were surprised that the transparency of these special quantum metamaterials can be switched on and off by configuring the basic state of the qubits. This was previously unknown," Il' ichev said. The research results, which were developed under the direction of Prof. Alexey Ustinov (NUST MISIS), were published in the journal Nature Communications.


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.