UAV predictive digital twin monitors vehicle's structural health

December 09, 2019 //By Nick Flaherty
Researchers in the US have developed a predictive digital twin of a custom built drone to monitor its reliability.
Researchers have developed a high speed digital twin of a custom built drone to monitor its reliability and predict potential failures.

The Dynamic Data-Driven Application Systems (DDDAS) digital twin project includes researchers from the University of Texas at Austin (UT Austin), MIT, Akselos and drone maker Aurora Flight Sciences. The twin represents each component of the UAV, as well as its integrated whole, using physics-based models that capture the details of its behaviour. The digital twin also uses on-board sensor data from the UAV and integrates that information with the model to create real-time predictions of the health of the vehicle.

"It's essential that UAVs monitor their structural health," said Karen Willcox, director of the Oden Institute for Computational Engineering and Sciences at The University of Texas at Austin (UT Austin) and project lead. "Big decisions need more than just big data, they need big models, too. These big problems are governed by complex multiscale, multi-physics phenomena. If we change the conditions a little, we can see drastically different behaviour."

The project combined computational modeling with machine learning to produce predictions that are reliable, and also explainable. In the case of the digital twin UAV, the system is able to capture and communicate the evolving changes in the health of the UAV. It can also explain what sensor readings are indicating declining health and driving the predictions.

The project also uses an approach called model reduction. This identifies approximate models that are smaller but still include he most important dynamics so that they can be used for predictions. "This method allows the possibility of creating low-cost, physics-based models that enable predictive digital twins," she said.

Rather than simulate the entire vehicle as a whole, Akselos helped to break the model into pieces such as a section of a wing and compute the geometric parameters, material properties, and other important factors independently, while also accounting for interactions that occur when the whole plane is put together.


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.