Sub-THz chip could help driverless cars 'see' through fog, dust

February 15, 2019 //By Julien Happich
Sub-THz chip could help driverless cars 'see' through fog, dust
Researchers at MIT have leveraged the unique propagation properties of sub-terahertz wavelengths to design a sensor chip able to detect objects hidden by fog or dust.

Akin to the working principle of LiDAR imaging, forward-transmitted sub-terahertz wavelengths bounce-off objects and the reflected signal can then be detected and processed for object detection and mapping. The difference being that sub-terahertz wavelengths (between microwave and infrared radiations) can be detected through fog and dust clouds with ease, whereas such conditions scatter the infrared-based signal emitted by LiDARs.

In a paper “A 32-Unit 240-GHz Heterodyne Receiver Array in 65-nm CMOS With Array-Wide Phase Locking” published in the IEEE Journal of Solid-State Circuits, the researchers report the integration of two interleaved 4x4 phase-locked dense heterodyne receiver arrays within a 1.2mm² die area, enabling the concurrent steering of two independent beams.

Based on their measurements, sensitivity (at a bandwidth of 1kHz) of a single unit was 58fW, offering a 4300x sensitivity improvement in phase-sensitive detection. The paper concludes that larger sensing arrays could be designed simply by tiling up more receiver units while still enabling a very compact design.

“A big motivation for this work is having better ‘electric eyes’ for autonomous vehicles and drones,” explained co-author Ruonan Han, an associate professor of electrical engineering and computer science, and director of the Terahertz Integrated Electronics Group in the MIT Microsystems Technology Laboratories (MTL). “Our low-cost, on-chip sub-terahertz sensors will play a complementary role to LiDAR for when the environment is rough.”


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.