Quantum sensor uses atoms to receive common communications signals: Page 2 of 2

September 10, 2019 //By Jean-Pierre Joosting
Quantum sensor uses atoms to receive common communications signals
A new type of radio receiver sensor that uses atoms to receive commonly used communications signals has been demonstrated by researchers at the National Institute of Standards and Technology (NIST).

In the new experiments, the team used a recently developed atom-based mixer to convert input signals into new frequencies. One radio-frequency (RF) signal acts as a reference and a second RF signal serves as the modulated signal carrier. Differences in frequency and the offset between the two signals were detected and measured by probing the atoms.

While many researchers have previously shown that atoms can receive other formats of modulated signals, the NIST team was the first to develop an atom-based mixer that could handle phase shifting.

Depending on the encoding scheme, the atom-based system received up to about 5 megabits of data per second. This is close to the speed of older, third-generation (3G) cell phones.

The researchers also measured the accuracy of the received bit stream based on a conventional metric called error vector magnitude (EVM). EVM compares a received signal phase to the ideal state and thus gauges modulation quality. The EVM in the NIST experiments was below 10 percent, which is decent for a first demonstration, Holloway said. This is comparable to systems deployed in the field, he added.

Tiny lasers and vapour cells are already used in some commercial devices such as chip-scale atomic clocks, suggesting it might be feasible to build practical atom-based communications equipment.

With further development, atom-based receivers may offer many benefits over conventional radio technologies, according to the paper. For example, there is no need for traditional electronics that convert signals to different frequencies for delivery because the atoms do the job automatically.

The antennas and receivers can be physically smaller, with micrometer-scale dimensions. In addition, atom-based systems may be less susceptible to some types of interference and noise. The atom-based mixer also can measure weak electric fields precisely.

The researchers now plan to improve the new receiver by reducing laser noise and other unwanted effects.

Reference

Paper: C.L. Holloway, M.T. Simons, J.A. Gordo and D. Novotny. 2019. Detecting and Receiving Phase Modulated Signals with a Rydberg Atom-Based Receiver. IEEE Antennas and Wireless Propagation Letters. September 2019 issue. DOI: 10.1109/LAWP.2019.2931450

www.nist.gov


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.