New method locates faults in power grids more efficiently

November 11, 2015 //By Paul Buckley
New method locates faults in power grids more efficiently
Researchers have developed a more efficient method to determine the exact location of short circuits in a power grid, which could be useful in the operation of complex power grid topologies that enable the large-scale integration of renewable energy resources.

When a high-voltage power line is damaged by wind, ice or a tree, electricity utilities must quickly find the fault location and repair it to meet the power quality requirements or avoid cascade blackout. It is common practice to locate the fault by first identifying the section without power through the use of sensors placed at regular intervals along the power line. A technician must then go to that section and visually inspect the line in order to find the fault location.

Researchers at École polytechnique fédérale de Lausanne (EPFL) have come up with a method for precisely determining where the short circuit takes place. This technology is based on the theory of electromagnetic time reversal (EMTR), a process already being used in acoustics and electromagnetics.

The researchers developed an embedded hardware platform hosting the fault location algorithm connected to the primary substation in the grid. When a short circuit occurs, the system analyzes the resulting waveforms observed at the measurement point. The fault location platform then time-reverses the waveforms and reinjects them into the grid model being simulated in the platform. The back-injected signals converge towards a given location that is the fault location.

The technology offers two main advantages:

•  Compared to conventional installed fault indicators, the developed fault location platform is faster and more efficient to locate the faults. "We can cover the entire power grid from one observation point, which obviates the need to install numerous sensors over hundreds of kilometers of power lines," says Reza Razzaghi, a researcher at EPFL's Distributed Electrical Systems Laboratory. The proposed method has been implemented in a chip-scale real-time simulator, also developed by the same researchers, providing a fast and not expensive solution for the problem.

•  Another plus: the more complex the grid, the more effective this method. "With a large number of reflecting boundaries and inhomogeneous transmission lines along which the waves are traveling and reflected, the results

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.