Miniature atomic clock promises to bring next-gen timing to portables

May 21, 2019 //By Jean-Pierre Joosting
NIST next-generation atomic clock
A much smaller than`usual, experimental, next-generation atomic clock that 'ticks' at high "optical" frequencies is made of just three small chips plus supporting electronics and optics.

Demonstrated by physicists at the National Institute of Standards and Technology (NIST) and described in Optica, the chip-scale atomic clock is based on the vibrations (or "ticks") of rubidium atoms confined in a tiny glass container, called a vapor cell, on a chip. Two frequency combs on chips act like gears to link the atoms' high-frequency optical ticks to a lower, widely used microwave frequency that can be used in applications.

The chip-based heart of the new clock requires very little power (just 275 milliwatts) and, with additional technology advances, could potentially be made small enough to be handheld. Chip-scale optical clocks like this could eventually replace traditional oscillators in applications such as navigation systems and telecommunications networks and serve as backup clocks on satellites.

The chip-based optical clock developed by NIST has an instability of 1.7 x 10−13 at 4,000 seconds – about 100 times better than the chip-scale microwave clock.

"We made an optical atomic clock in which all key components are microfabricated and work together to produce an exceptionally stable output," NIST Fellow John Kitching said. "Ultimately, we expect this work to lead to small, low-power clocks that are exceptionally stable and will bring a new generation of accurate timing to portable, battery-operated devices."

The clock was built at NIST with help from the California Institute of Technology (Pasadena, CA), Stanford University (Stanford, CA) and Charles Stark Draper Laboratories (Cambridge, MA).


The heart of NIST's next-generation miniature atomic clock – ticking at high 'optical' frequencies – is this vapor cell on a chip, shown next to a coffee bean for scale. The glass cell (the square window in the chip) contains rubidium atoms, whose vibrations provide the clock 'ticks.' The entire clock consists of three microfabricated chips plus supporting electronics and optics. Image courtesy of Hummon/NIST


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.