Laser-induced graphene nanogenerators could power future wearables

June 03, 2019 //By Nick Flaherty
Rice University postdoctoral researcher Michael Stanford holds a flip-flop with a triboelectric nanogenerator, based on laser-induced graphene, attached to the heel. Walking with the flip-flop generates electricity with repeated contact between the generator and the wearer’s skin. Stanford wired the device to store energy on a capacitor. Photo by Jeff Fitlow
Researchers have used a new formulation of graphene to create a generator that uses the static electricity from movement to create power.

The lab of chemist James Tour at Rice Unversity has used laser-induced graphene (LIG) in wearable metal-free devices that generate electricity. Putting LIG composites in contact with other surfaces produces static electricity that can be used to power devices. In experiments, the researchers connected a folded strip of LIG to a string of light-emitting diodes and found that tapping the strip produced enough energy to make them flash.

LIG is a graphene foam produced when chemicals are heated on the surface of a polymer or other material with a laser, leaving only interconnected flakes of two-dimensional carbon. The lab first made LIG on common polyimide, but extended the technique to plants, food, treated paper and wood.

A larger piece of LIG embedded within a flip-flop let a wearer generate energy with every step, as the graphene composite’s repeated contact with skin produced a current to charge a small capacitor.

“This could be a way to recharge small devices just by using the excess energy of heel strikes during walking, or swinging arm movements against the torso,” said Tour. The lab turned polyimide, cork and other materials into LIG electrodes to see how well they produced energy and stood up to wear and tear. They got the best results from materials on the opposite ends of the triboelectric series, which quantifies their ability to generate static charge by contact electrification.

In the folding configuration, LIG from the tribo-negative polyimide was sprayed with a protecting coating of polyurethane, which also served as a tribo-positive material. When the electrodes were brought together, electrons transferred to the polyimide from the polyurethane. Subsequent contact and separation drove charges that could be stored through an external circuit to rebalance the built-up static charge. The folding LIG generated about 1 kilovolt, and remained stable after 5,000 bending cycles.

An electron microscope image shows a cross-section of a laser-induced graphene and polyimide composite created at Rice University for use as a triboelectric nanogenerator. The devices are able to turn movement into energy that can then be stored for later use. (Credit: Tour Group/Rice University)

A cross-section of a laser-induced graphene and polyimide composite created at Rice University as a triboelectric nanogenerator. (Credit: Tour Group/Rice University)


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.