Graphene as a filter for future THz wireless devices

April 07, 2016 //By Jean-Pierre Joosting
Graphene as a filter for future THz wireless devices
Scientists at EPFL and UNIGE have developed a graphene based microchip that essentially filters out unwanted radiation ensuring that a wireless data signal remains uncorrupted. The discovery, the results of which are published in Nature Communications, could help wireless telecommunications share data at a rate that is ten times faster than currently possible.

The microchip works by protecting sources of wireless data from unwanted radiation in a similar fashion to the way polarised sunglasses work, ensuring that the data remain intact by reducing source corruption.

The reasearchers discovered that graphene can filter out radiation in much the same way as polarized glasses. The vibration of radiation has an orientation. Like polarized glasses, their graphene-based microchip makes sure that radiation that only vibrates a certain way gets through. In this way, graphene is both transparent and opaque to radiation, depending on the orientation of vibration and signal direction. The EPFL scientists and their colleagues from Geneva used this property to create a device known as an optical isolator.

"Our graphene based microchip is an essential building block for faster wireless telecommunications in frequency bands that current mobile devices cannot access," says EPFL scientist Michele Tamagnone.

Further, the microchip works in a frequency band that is currently empty, called the Terahertz gap.

Wireless devices work today by transmitting data in the Gigahertz range or at optical frequencies. This is imposed by technological constraints, leaving the potential of the Terahertz band currently unexploited for data transmission.

But if wireless devices could use this Terahertz bandwidth, future mobile phones could potentially send or receive data tens of times faster than now, meaning better sound quality, better image quality and faster uploads.

The graphene-based microchip brings this Terahertz technology a step closer to reality. This discovery addresses an important challenge that was so far unsolved due to lacking technologies, confirming once more the extraordinary physical properties of graphene.

www.epfl.ch/index.en.html


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.