Bioscience researchers get $1M to develop portable medical sensors

July 24, 2019 //By Rich Pell
Bioscience researchers get $1M to develop portable medical sensors
Researchers at the Institute for Bioscience and Biotechnology Research (Rockville, MD) have announced that they have recently received $1 million from the Defense Threat Reduction Agency (Fort Belvoir, VA), part of the US Department of Defense, to advance their work developing wearable sensors that measure biochemical information to diagnose disease.

The researchers say their approach is different from conventional biological research and biomedical diagnostic testing, which involves first studying a biological system, identifying an important chemical, and then developing a way to measure it. Instead, they propose starting with measurements that can be made quickly on a deployable device, and then from among those measurements determining which datasets give valuable information that can be used for basic research and diagnostic development.

The researchers' approach is focused on reduction-oxidation (redox) reactions, which involve the transfer of electrons from one molecule to another. Chemical redox reactions are used by cells for a wide range of biological functions; and since electronic devices are also based on the movement of electrons, say the researchers, "communication" between biology and a device is possible.

"We believe that redox state is an example of an easily measured modality with the potential to give us access to systems-level biological information," says IBBR Fellow Dr. Gregory Payne (Research Professor, IBBR), the principal investigator on the award. "The ultimate goal is to be able to determine a person's health status from a simple and rapid redox measurement, whether they are in a physician's office, at home, or on the battlefield."

The researchers plan to collect redox measurements from a variety of biological systems and look for patterns that reveal stable and perturbed states. They say they are plan to continue to develop sensors that directly connect biology to electronic circuits. Both of these objectives will be informed by exploration of cellular mechanisms of redox detection and response.

The project is an ongoing collaboration between Payne and IBBR Fellow Dr. William Bentley (Professor, Fischell Department of Bioengineering, University of Maryland, College Park; Director, Robert E. Fischell Institute for Biomedical Devices), and researchers at the Naval and Army Research Laboratories.

"Developing biosensors to address medical challenges is an important pillar of IBBR's biomolecular engineering program," says IBBR Director Dr. Thomas Fuerst. "We


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.