3D printing creates complex multi-material components

September 02, 2020 // By Christoph Hammerschmidt
3D printing creates complex components from multiple materials
The Fraunhofer Institute for Ceramic Technologies and Systems IKTS (Dresden, Germany) has developed a 3D printing system that can combine different materials into a single additive-manufactured component. This enables products with combined properties or functions. In particular, high-performance materials such as ceramics and metal can be used in this system.

In additive manufacturing, or 3D printing, the product is not formed from one piece, but is applied layer by layer. This enables precise and individual production with precisely defined product properties. The technology is constantly being developed: Initially, it was mainly plastics, but for some time now metals or ceramic-based materials have also been processed.

The Fraunhofer IKTS is now taking a big step forward. The researchers have developed a system that enables the additive production of multi-material components based on thermoplastic binder systems. The system works on the principle of Multi Material Jetting (MMJ). In this process, different materials with their different characteristics are combined to form a product. Currently, scientists can process up to four materials simultaneously. The areas of application are diverse and are located wherever companies want to produce highly integrated multifunctional components with individually defined properties.

The production is a continuous process. First, the powdered ceramic or metallic starting materials are homogeneously distributed in a thermoplastic binder substance. The masses produced in this way are filled into micro-dosing systems (MDS), whereupon the actual production process starts. During this process, the masses are melted at around 100 degrees Celsius, making them very finely metered. Precise positioning of the droplets is achieved using specially developed software. The dosing systems are computer-controlled and deposit high-precision drop by drop in the right place, causing the component to build up pointwise - up to 60 mm and 1000 drops per second.

The system works with a drop size between 300 and 1000 μm, resulting in a height of the applied layers between 100 and 200 μm. The maximum size that can currently be produced is 20 × 20 × 18 centimeters. "The decisive factor is the individual dosing of the metal or ceramic masses. This dosage ensures that the additively manufactured end product receives the desired properties and functions such as strength, thermal and electrical conductivity during the final sintering process in the furnace," says IKTS scientist Uwe Scheithauer.

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.