Transistor technology promises more efficient computers

Transistor technology promises more efficient computers

Technology News |
Researchers at the University of California, Berkeley, say they have created engineered crystal structures that, when used in advanced transistors, could help state-of-the-art computers and smartphones - which contain tens of billions of silicon transistors - run on less power.
By Rich Pell


The researchers describe their work as a major breakthrough in the design of the gate oxide component in transistors, which plays a key role in switching the transistor on and off. The gate oxide is a thin layer of material that converts the applied voltage into an electric charge, which then switches the transistor.

“We have been able to show that our gate-oxide technology is better than commercially available transistors,” says study senior author Sayeef Salahuddin, the TSMC Distinguished professor of Electrical Engineering and Computer Sciences at UC Berkeley. “What the trillion-dollar semiconductor industry can do today — we can essentially beat them.”

This boost in efficiency, say the researchers, is made possible by an effect called negative capacitance, which helps reduce the amount of voltage that is needed to store charge in a material. The new study shows how negative capacitance can be achieved in an engineered crystal composed of a layered stack of hafnium oxide and zirconium oxide, which is readily compatible with advanced silicon transistors.

By incorporating the material into model transistors, the study demonstrates how the negative capacitance effect can significantly lower the amount of voltage required to control transistors, and as a result, the amount of energy consumed by a computer.

“In the last 10 years, the energy used for computing has increased exponentially, already accounting for single digit percentages of the world’s energy production, which grows only linearly, without an end in sight,” says Salahuddin. “Usually, when we are using our computers and our cell phones, we don’t think about how much energy we are using. But it is a huge amount, and it is only going to go up. Our goal is to reduce the energy needs of this basic building block of computing, because that brings down the energy needs for the entire system.”

Creating negative capacitance requires careful manipulation of a material property called ferroelectricity, which occurs when a material exhibits a spontaneous electrical field. Previously, the effect has only been achieved in ferroelectric materials called perovskites, whose crystal structure is not compatible with silicon.

In their study, the researchers showed that negative capacitance can also be achieved by combining hafnium oxide and zirconium oxide in an engineered crystal structure called a superlattice, which leads to simultaneous ferroelectricity and antiferroelectricity.

“We found that this combination actually gives us an even better negative capacitance effect, which shows that this negative capacitance phenomena is a lot broader than originally thought,” says study co-first author Suraj Cheema, a postdoctoral researcher at UC Berkeley. “Negative capacitance doesn’t just occur in the conventional picture of a ferroelectric with a dielectric, which is what’s been studied over the past decade. You can actually make the effect even stronger by engineering these crystal structures to exploit antiferroelectricity in tandem with ferroelectricity.”

The researchers found that a superlattice structure composed of three atomic layers of zirconium oxide sandwiched between two single atomic layers of hafnium oxide, totaling less than two nanometers in thickness, provided the best negative capacitance effect. Because most state-of-the-art silicon transistors already use a 2-nanometer gate oxide composed of hafnium oxide on top of silicon dioxide, and since zirconium oxide is also used in silicon technologies, these superlattice structures can easily be integrated into advanced transistors.

To test how well the superlattice structure would perform as a gate oxide, the researchers fabricated short channel transistors and tested their capabilities. These transistors would require approximately 30% less voltage while maintaining semiconductor industry benchmarks and with no loss of reliability, compared to existing transistors.

“One of the issues that we often see in this type of research is that we can we can demonstrate various phenomena in materials, but those materials are not compatible with advanced computing materials, and so we cannot bring the benefit to real technology,” says Salahuddin. “This work transforms negative capacitance from an academic topic to something that could actually be used in an advanced transistor.”

For more, see “Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors.”

Linked Articles