Battery Stack Monitor Maximizes Performance of Li-Ion Batteries in Hybrid and Electric Vehicles: Page 7 of 8

April 29, 2020 //By Cosimo Carriero, Analog Devices
Battery Stack Monitor Maximizes Performance of Li-Ion Batteries in Hybrid and Electric Vehicles
Lithium-ion (Li-Ion) batteries offer a high energy density, but to maximize performance, a battery monitoring system (BMS) is mandatory. A state-of-the-art BMS not only allows you to extract the highest quantity of charge from your battery pack, but also lets you manage the charge and discharge cycles in a safer way, which results in an extended life.

The ADI measurement ICs use sigma-delta analog-to-digital converters (ADCs). With a sigma-delta converter, the input is sampled many times during a conversion, and then averaged. The result is built-in low-pass filtering to eliminate noise as a source of measurement error; the cutoff frequency is established by the sample rate. The LTC6811 uses a third-order sigma-delta ADC with programmable sample rates and eight selectable cutoff frequencies. Figure 8 shows the filter response for the eight programmable cutoff frequencies. Outstanding noise reduction is achieved by enabling measurement of all 12 battery cells as fast as 290 µs. A bulk current injection test, where 100 mA of RF noise is coupled into the wires connecting the battery to the IC, showed less than 3 mV of measurement error.

Cell Balancing for Optimized Battery Capacity

Battery cells, even if accurately manufactured and selected, show slight differences from each other. Any mismatch in capacity between the cells results in a reduction of the overall pack capacity.

To better understand this point, let’s consider our example where the cells were kept between 10% and 90% of the full capacity. The effective lifetime of a battery can be significantly shortened by deep discharge or overcharging. Therefore, the BMS provides undervoltage protection (UVP) and overvoltage protection (OVP) circuitry to help prevent these conditions. The charging process is stopped when the lowest capacity cell reaches the OVP threshold. In this case, the other cells are not fully charged and the battery is not storing the maximum allowed energy. Similarly, the system is stopped when the lowest charged cell hits the UVP limit. Also, there is still energy in the battery to power the system, but, for safety reasons, it can’t be used.

It is clear that the weakest cell in the stack dominates the performances of the full battery. Cell balancing is a technique that helps overcome this issue by equalizing the voltage and SOC among the cells when they are at full charge.5 There are two techniques for cell balancing—passive and active.

With passive balancing, if one cell becomes overcharged, the excess charge is dissipated into a resistor. Typically, there is a shunt circuit which consists of a resistor and a power MOSFET used as a switch. When the cell is overcharged the MOSFET is closed and the excess energy is dissipated into the resistor. The LTC6811 balances each monitored cell using an internal MOSFET to control the individual cell charge currents. The internal MOSFETs enable compact designs, and suffice for currents to 60 mA. For higher charge currents, external MOSFETs can be used. Timers are also provided to adjust the balancing time.

Design category: 

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.