Uncrackable encryption comes from the space

October 01, 2018 // By Christoph Hammerschmidt
Today's encryption methods will soon be easily cracked by powerful quantum computers. Researchers are therefore thinking about how data communication paths in the future can be encrypted secure enough so they cannot be cracked by quantum computers. The Fraunhofer Institute for Applied Optics and Precision Engineering IOF (Jena, Germany) has developed a solution A quantum source that delivers entangled photons. To ensure an optimal range, it will be stationed in space.

Interleaved photons generated by a quantum source in space could ensure tap-proof communication in security-relevant areas. A team of scientists at the Fraunhofer IOF has developed such a space-compatible, robust and high-performance quantum source. Its goal is to send the first European quantum satellite into space in about four years. The quantum source is stable enough to function permanently and reliably under the extreme conditions of space. With the aid of a nonlinear crystal, which is hit by a laser beam, the device, the size of a bread box, generates 300,000 entangled photon pairs per second. With these twin light particles, sensitive communication can be securely encrypted in the future. The principle behind it: The two photons have an entangled polarization, regardless of how far apart they are from each other. Based on this, keys can be established between two communication partners, who betray both immediately if someone tries to intercept their communication. If someone unauthorized intervenes, the entanglement disintegrates, and the access is verifiable.

Of course, the entangled photons could also reach their destinations via fiber optic cables, such as the telephone line. But this would greatly limit the range and disrupt the important entanglement. The Jena researchers say that the better solution would be to send the quantum source with a satellite into the low Earth orbit, where it can send the double light particles to Earth from 400 kilometers above the Earth's surface with as little interference as possible.

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.