Fish-inspired photonics promise more efficient wireless communication

May 10, 2018 // By Jean-Pierre Joosting
Researchers have demonstrated a light-based device that mimics the incredible jamming avoidance response (JAR) of a cave-dwelling fish that works by moving the frequency of an emitted signal away from other signals that could potentially cause interference.

The demonstration could eventually help overcome the spectral bandwidth crunch caused by ever increasing numbers of wireless devices and transmitted data competing for space on a limited amount of available bandwidth.

Eigenmannia are cave-dwelling fish that live in complete darkness. To survive without the presence of light, the fish emit an electric field to communicate with other fish and to sense the surrounding environment. When two fish emit signals at similar frequencies they can interfere with each other, or jam, creating a scrambled signal. Thanks to a unique neural algorithm, these fish can adjust their electric communication signals so that they don't interfere with those coming from other nearby fish.

"We think that humans could use the same jamming avoidance response neural algorithm as the Eigenmannia, but at a much faster speed and frequency," said research team leader Mable P. Fok from the University of Georgia. "This could allow a smarter and more dynamic way to use our wireless communication systems without the need for the complicated coordination processes that currently prevent jamming by reserving whole sections of bandwidth for specific phone carriers or users such as the military."

In The Optical Society (OSA) journal Optics Express, the researchers demonstrated a light-based, or photonic, JAR that can be used to avoid jamming. They showed that the system performs much like the Eigenmannia's JAR in that it detects whether another signal could present a jamming problem and then intelligently shifts its emitting signal higher or lower in frequency so that it moves away from the jamming signal without crossing its frequency, which would amplify the jamming.


Researchers developed and demonstrated a light-based device that mimics the jamming avoidance response of Eigenmannia fish. These fish emit an electrical field for sensing and communication and use a jamming avoidance response system to move the frequency of their signal away from other signals that could potentially cause interference. Photo credit: Original photo by Will Kirk, Courtesy of Wikipedia, Creative Commons Attribution: Creative Commons, Attribution 2.5 Generic license. Image modified by Mable P. Fok, University of Georgia.


s