3-D printed plastic sensors connect to Wi-Fi

December 06, 2017 // By Rich Pell
Researchers at the University of Washington (Seattle, WA) have developed what they claim are the first 3-D printed plastic objects and sensors that can connect to Wi-Fi without electronics.

The researchers' goal was to be able to 3D print wireless sensors, input widgets, and objects that can communicate with smartphones and other Wi-Fi devices without the need for batteries or electronics. With that in mind, they developed a toolkit for wireless connectivity that can be integrated with 3D digital models and fabricated using commercially available desktop 3D printers and plastic filament materials.

“Our goal was to create something that just comes out of your 3-D printer at home and can send useful information to other devices," says Vikram Iyer, co-lead author of a paper on the project and UW electrical engineering doctoral student. "But the big challenge is how do you communicate wirelessly with Wi-Fi using only plastic? That's something that no one has been able to do before."

The 3D printed objects are made of conductive printing filament that mixes plastic with copper. To enable them to communicate, the researchers used backscatter techniques , whereby an antenna embedded in the objects reflects radio signals emitted by a Wi-Fi router to encode information that is able to be then "read" by the Wi-Fi receiver in a receiving device, such as a phone or computer.

Functions normally performed by electronic components were replaced by mechanical motion activated by springs, gears, switches, and other parts that can be 3-D printed. Physical motion — such as pushing a button, liquid flowing out of a bottle, turning a knob, or removing an item from a weighted tool bench — triggers gears and springs elsewhere in the 3-D printed object, causing a conductive switch to intermittently connect or disconnect with the antenna and change its reflective state.

The shape of the gears and the speed at which they move control how long the backscatter switch makes contact with the antenna, creating patterns of reflected signals that can be decoded by a Wi-Fi receiver.

"As you pour detergent out of a Tide bottle, for instance,


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.